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Scientific interest may include:

● joint evolution of the measurement and event-time proce~es;

● adjustment of inferences about longitudinal memurements to allo~v
for possibly outcome-dependent dropout;

. use of intermediate Iongitudind memurements as surrogate for time
to terminating event.



Example: schizophrenia trial

● mtiti-centre, double bhnd, para~el group study

● 523 patients, randomly flocated, amongst six treatments:

– placebo

- hdoperidol 20mg (standmd thempy)

\ ‘{,
- risperidone 2mg, 6mg, 10mg ~d 16rng (novel therapy).

● respotie variable wm a memure of psychiatric disorder (PANSS)
.-—

● memurements intended to be t~en at week:

–1 (selection)., O (basefine), 1, 2, 4,6, 8

0 270 dropouts, for”follotilg stated re=ons:
.—

Abnormal lab resdt 4
Adverse experience 26
Inadequate response 183
Inter-current illnms 3

Lost to follow-up 3

Other rewon 7
Uncooperative 25

Withdrew consent 19

L

Clinical objective

achieve reduction of at lewt 2070 in mea PANSS score



Observed mean response by time
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Proposed class of models

1. Latent process

W(t) = {Wl (~), W2(t)} a, bivariate Gaussian process

● {Vl(t) j V2(t)} : bivariate stationary Gaussian process

. (u1, u2) : multivariatk Gaussian r=dom effects

W(t) re&ed ,tidependently for each subject

2. Measurement model

~j = pi(tij) + Wli(tij) + Zij

● pz(tij)= X12 (~ij)~l



‘ 3. Intensity model
‘.,

Ai(t)= ~(t)Qo(t)7(x22(t)p2+ w2i)

● a.(t) = non-parametric basehne intensity

.“ & (t} =,, ~at risk’ indcator

. ~icd ch?ce for, X might be 7(02) = eti{~2(~)]

4. Special case for preliminary analysis

Hence, ~ is a single pwameter which memures association
betieen measurement process and event intensi~.



Likelihood evaluation
.

Notation

Y : metiurement data

W“: (bivaria$e) latent process

N : event histo~ data.

● Condition independence:

‘\,\

● Standard mar@d for Y: Ll(d, Y)

● Easy condition distribution [W / Y]

● Standard conditional for [N ] W]: L2(0,N / W)

● * selection. factorisation

Requires. infinitedimensional inte~ation ti W?

No - non-parametric specification for b=efine hazard impfies
we only need W at event times



.\

A score test for association
\

k!’”’
. joint analysis of Y and # computationdy intensive

but separate analyses straightforward

o hence; may be useful to ‘conduct a prehminary test of association

between ‘Y and D
‘>
\,

● score test is bwed on slope of Iog-fikefiood at Ho : ~ = O and ~s

therefore obtainable from separate analyses of Y and D

Restiting test statistic is

where

~i(~)= Ni(t)– Ai(t)= Ni(t) – ~t&(u)e’2i(u)’p2dAo (u)

~i(t) = number of s~j < t ‘

~(t) = “at risk” indicator

.Az(t) = f: ~~(S)dS

Ao(t) = f; Qo(S)dS



Properties of score

Derive Norrnd approximation to

using either:

test
,,

nti distribtition of score test statistic

. “*direct calculation (test statistic * tinear tiction~)

o ~a~ingde centr~ ,fimit theorem (simpler, and givei sirnflar result)
\ \,

Simdation study
trial suggests:

with sample sizes comparable to risperidone

● nominal size OK

● power incremes with ~

● power increases with strength of serial correlation



Application to risperidone tr~al
,.

Observed ad fitted me~s
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Score test: N(O, 1) = 9.86

l~lat if we include adjwtment for bweline?

Score test: N(071) = 9.30



Estimation in p~esence of as~ocia~ion
1,

L(o) = Ll(e) x EwlY[~2(~, N I~)1

3. Intensity model re-visited

‘1,,\

● Q.(t) = non-parmetric b=efine intensi~

● Ri(t) = ‘(at risk’” indicator

● F(q2) = exp{W2(t)}

Options include:

. adopt fully-parametric approach and use MCMC

o two-stage plug-in method

● non-iterative Monte Carlo. evaluation

● quasi-EM



Two-stage plug-in method ‘
. .

. Replace EWIY[L2(8,N / W) tith L2(0, N I EWIYIW])

. Use patiid hke~ood PL2 in place of L2

● M@mis,e

L(O) = LI(0) x PL2(0, N ] Ewly[~])

Simdation eWe~ment:

Mean ~

Method ~ = O ~ = 0.1 ~ = 0.25 y = 0.5

E[W] 0.01 0.08 0.23 0.43 Sd N 0.08



‘“ Non-iterative Monte Carlo evaluation.

● Like~ood/partid likelihood

.L(o)= Ll(@) ‘x.EWIY[PL2(0, N /~)]

● Estimate E[PL2] by Monte Carlo Integration

● More stabl~ to e~timate E[log PL2]?

Simdation e~eriment:

Method y=o

E[W] 0.01

fi[PL2] -0.01

fi[log PL2] -0.02

Mean ~

Y=O.1 ~= 0.25 7 =0.5

0.08 0.23 0.43 sd = 0.08

0.07 0.18 0.38 sd N 0.08

0.07 0.15 0.32 sd = 0:06



Quasi-EM. .
.,.

● W occursh PL2 only through exp(W)

. EM algorithm: replace with ~wl(y~) [exP(W)].

. QuMi-EM : use ~wly[exp(W)] .

‘!\ \

Simtiation expertient:

E[W] 0.01 0.08 0.23 0.43 sd N 0.08

E[PL2] -0.01 0.07 0.18 0.38 sd = 0.08

&[logPL2] .’ -0.02 0.07 0.15 0.32 sd m 0.06

E[exp(W)] 0.01 0.10 0.26 0.51 Sd N 0:09

Current work

● develop ando~ with omitted frailty in survival modelling

. quanti& difference ,between [w/Y, ~] and [w/Y]
.

● extend modehg fimework .– under qu~i-EM estimation, no

particular advantage in restriction to W2 = VWl



Martingale.

~ N[’t).

theory (RH)

N(t) is a counting process, with conditional intensity A(t) such thz~t

E[dN(t)17t] = A(t)dt

where Ft denotes titory of N(t) up to t–

Cumdative intensity is

ii(t) = ~tA(s)ds

Then,

lvI(t) =.N(t) – f!(t)

is a rnmtingde, with essential prope~ that



Some properties

. Mat ingde central limit theorem: for large m,

for tiown v(t)

● If M(t) is a martingale :md h(t) k tiy Iefi-contkuous bnction then %

H(t) = Jth(s)dM(s)

is *o a martingale, witlm wimce

~:{h(s)}2dA(s)



.Alternat ive variance calculation.

‘1
, \.,



Power study
$

Simulation model:

● m = 250 sl.~bjects in Sirlgle,group

o up to 4 measurements at times t = 0,.10, 20, 30, censoring time ~ = .50

● p(t) = 5 + O.lt,a:= 0.25

e VV1(t) = U + V(t) where:
..

– u ‘~ N(o,a:
-“V(t) w SGP(O, a?, eW(-lk\/#))

– # such that lag-10 correlation is 0.5 or 0.05

–Q:+o; =l

0.5 0.5 0.5 0.75 0.04 0.22 0.90 1.00

0.05 0.525 0.04 0.10 0.67 1.00

0.8 0.2 0.5 0.90 0.08 0.21 0.92 1.00

0.05 0.81 0.06 ‘0.20 0.86 1.00

0.2 0.8 0.5 0.60 0.06 0.18 0.74 1.00
0.05 0.24 0.06 0.08 0.36 og~

● nominal size 01<

● power increases ~i-ithT

. power increases with stren~tih of serial correi~~tion
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